3.790 \(\int \frac{x (a+b x)}{(c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=33 \[ \frac{b x \log (x)}{c \sqrt{c x^2}}-\frac{a}{c \sqrt{c x^2}} \]

[Out]

-(a/(c*Sqrt[c*x^2])) + (b*x*Log[x])/(c*Sqrt[c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0067799, antiderivative size = 33, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {15, 43} \[ \frac{b x \log (x)}{c \sqrt{c x^2}}-\frac{a}{c \sqrt{c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*x))/(c*x^2)^(3/2),x]

[Out]

-(a/(c*Sqrt[c*x^2])) + (b*x*Log[x])/(c*Sqrt[c*x^2])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x (a+b x)}{\left (c x^2\right )^{3/2}} \, dx &=\frac{x \int \frac{a+b x}{x^2} \, dx}{c \sqrt{c x^2}}\\ &=\frac{x \int \left (\frac{a}{x^2}+\frac{b}{x}\right ) \, dx}{c \sqrt{c x^2}}\\ &=-\frac{a}{c \sqrt{c x^2}}+\frac{b x \log (x)}{c \sqrt{c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0029206, size = 22, normalized size = 0.67 \[ \frac{x^2 (b x \log (x)-a)}{\left (c x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*x))/(c*x^2)^(3/2),x]

[Out]

(x^2*(-a + b*x*Log[x]))/(c*x^2)^(3/2)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 21, normalized size = 0.6 \begin{align*}{{x}^{2} \left ( b\ln \left ( x \right ) x-a \right ) \left ( c{x}^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x+a)/(c*x^2)^(3/2),x)

[Out]

x^2*(b*ln(x)*x-a)/(c*x^2)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.06939, size = 28, normalized size = 0.85 \begin{align*} \frac{b \log \left (x\right )}{c^{\frac{3}{2}}} - \frac{a}{\sqrt{c x^{2}} c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)/(c*x^2)^(3/2),x, algorithm="maxima")

[Out]

b*log(x)/c^(3/2) - a/(sqrt(c*x^2)*c)

________________________________________________________________________________________

Fricas [A]  time = 1.61938, size = 54, normalized size = 1.64 \begin{align*} \frac{\sqrt{c x^{2}}{\left (b x \log \left (x\right ) - a\right )}}{c^{2} x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)/(c*x^2)^(3/2),x, algorithm="fricas")

[Out]

sqrt(c*x^2)*(b*x*log(x) - a)/(c^2*x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (a + b x\right )}{\left (c x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)/(c*x**2)**(3/2),x)

[Out]

Integral(x*(a + b*x)/(c*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.0683, size = 63, normalized size = 1.91 \begin{align*} -\frac{b \log \left ({\left | -\sqrt{c} x + \sqrt{c x^{2}} \right |}\right ) - \frac{2 \, a \sqrt{c}}{\sqrt{c} x - \sqrt{c x^{2}}}}{c^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x+a)/(c*x^2)^(3/2),x, algorithm="giac")

[Out]

-(b*log(abs(-sqrt(c)*x + sqrt(c*x^2))) - 2*a*sqrt(c)/(sqrt(c)*x - sqrt(c*x^2)))/c^(3/2)